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Counting Distinguishable RNA Secondary Structures

MASARU NAKAJIMA1 and ANDREW D. SMITH2

ABSTRACT

RNA secondary structures are essential abstractions for understanding spacial folding be-
haviors of those macromolecules. Many secondary structure algorithms involve a common
dynamic programming setup to exploit the property that secondary structures can be de-
composed into substructures. Dirks et al. noted that this setup cannot directly address an
issue of distinguishability among secondary structures, which arises for classes of sequences
that admit nontrivial symmetry. Circular sequences are among these. We examine the
problem of counting distinguishable secondary structures. Drawing from elementary results
in group theory, we identify useful subsets of secondary structures. We then extend an
algorithm due to Hofacker et al. for computing the sizes of these subsets. This yields a cubic-
time algorithm to count distinguishable structures compatible with a given circular se-
quence. Furthermore, this general approach may be used to solve similar problems for
which the RNA structures of interest involve symmetries.

Keywords: counting algorithms, RNA secondary structure.

1. INTRODUCTION

The RNA secondary structure model is a convenient framework for analyzing and understanding RNA

conformations (Mathews, 2006). A secondary structure is a specifically constrained set of paired positions

in a sequence. Algorithms to identify optimal structures for given RNA sequences, that is, to ‘‘fold’’ RNA,

focused on maximizing the number of paired bases (Nussinov and Jacobson, 1980) and finding minimum free

energy secondary structures (Waterman, 1978; Zuker and Stiegler, 1981). Although models of varying intri-

cacies exist, free energy for a secondary structure is typically evaluated as a function of energies associated with

bases at paired positions. The algorithm of McCaskill (1990) efficiently computes the partition function for the

set of secondary structures, and enables a detailed characterization of equilibrium secondary structural features.

Secondary structures with so-called pseudoknots are biologically relevant, but inclusion of such struc-

tures in the analysis dramatically increases its complexity (Akutsu, 2000; Dirks and Pierce, 2003; Rivas and

Eddy, 1999).

Most of the algorithmic work on secondary structures has focused on ordinary RNA sequences, that is,

strings, but certain variations have also emerged as important. For example, circular RNAs are relevant in
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studies of certain viruses (Gudima et al., 2004) and viroids (Flores et al., 2004). Although circular RNAs

fundamentally differ from ordinary RNA sequences, the usual algorithms can often be adapted by slight

modifications to solve corresponding problems on circular sequences. Zuker and Sankoff (1984) and Zuker

(1989) established a folding algorithm for circular RNAs. Secondary structures for interacting RNA se-

quences have also been studied, driven, in part, by applications in biotechnology (Isaacs et al., 2006).

Algorithms to fold multiple interacting RNA sequences have been developed by Dimitrov and Zuker

(2004) and Andronescu et al. (2005). Dirks et al. (2007) gave a cubic time algorithm to compute the

partition function for a multiset of RNA sequences under restrictions that remain useful in practice.

The core of most RNA folding and partition function algorithms is dynamic programming that exploits

properties of substructures. The recurrences for such algorithms closely resemble those for context-free

grammars (Sakai, 1961) and may be viewed as variants thereof. In this article, we refer to this type of

dynamic programming algorithm as the ‘‘standard’’ dynamic programming for convenience. For ordinary

RNA sequences, the secondary structures accounted for by such algorithms all represent physically dis-

tinguishable conformations. However, this need not hold for circular RNAs or multiple interacting RNAs.

For circular RNAs, if the sequence consists of repeated substrings, different secondary structures may be

indistinguishable (Hofacker et al., 2012). Dirks et al. (2007) also observed that secondary structures of

interacting RNA sequences can be indistinguishable.

Such indistinguishable secondary structures can lead to redundancy when attempting to count or com-

pute partition functions. Moreover, the extent of such redundancy depends on the symmetry (defined

formally below) of each structure (Dirks et al., 2007). Since this symmetry is a global property for any

individual secondary structure, the standard dynamic programming schemes, which decompose a problem

as independent subproblems, cannot be adapted through local adjustments. Dirks et al. (2007) observed

that, in computing the partition function, the above fact does not cause an issue, and had the insight that a

symmetry correction to the free energy can compensate for any redundancy. However, redundancy cannot

be ignored when counting distinguishable secondary structures. To our knowledge, no efficient algorithm to

count distinguishable secondary structures for circular RNAs has been given.

We introduce a general approach to count distinguishable secondary structures on circular sequences. We

use a result from group theory to identify certain subsets of secondary structures, the sizes of which are

related to the number of distinguishable secondary structures. This allows us to build on an algorithm given

by Hofacker et al. (2012), extending it to count distinguishable secondary structures for circular sequences

in cubic time, in a model of computation that allows constant time multiplication.

2. PRELIMINARIES

A circular RNA sequence w is a cyclically ordered multiset of RNA bases {A,C,G,U}. Cyclic ordering

implies, for example, that circular sequences spelled ACG, CGA, GAC are all identical. The length of a

circular sequence is the size of the multiset of bases. To reference the positions of bases in a circular

sequence w of length n, we assume a representative spelling has been arbitrarily chosen (e.g., the spelling

ACG for the above example). We then index from 0 to n - 1 in that spelling, such that wi 2 fA‚ C‚ G‚ Ug
for each i 2 [0‚ n). We call these indices sites.

A secondary structure s for w is a set of unordered pairs from f0‚ . . . ‚ n - 1g such that:

S1. For all fi‚ jg in s, i 6¼ j.

S2. For all fi‚ jg and fk‚ lg in s, either fi‚ jg = fk‚ lg or fi‚ jg \ fk‚ lg = ;.
S3. For all fi‚ jg and fk‚ lg in s, if i < k < j then i < l < j.

S4. For all fi‚ jg in s, fwi‚ wjg 2 B, where B = ffA‚ Ug‚ fC‚ Gg‚ fG‚ Ugg are the allowed base pairs.

Condition S1 prevents a base from pairing with itself. In practical applications, steric constraints such as

jj - ij > 3 are used (Mathews et al., 1999); here we ignore these for simplicity. Condition S2 ensures that no

site is involved in more than one pair. Condition S3 prevents two pairs fi‚ jg and fk‚ lg from satisfying

i < k < j < l, which is called a pseudoknot. Condition S4 ensures that the pairs are valid RNA base pairs.

We let Ow denote the set of secondary structures for w. From here onward, we simply write structures to

mean secondary structures.

The problem of counting structures for a given circular sequence w is closely related to the partition

function problem for ordinary sequences, which can be solved in cubic time (Lyngsø et al., 1999;

McCaskill, 1990). We note that, while the last positions for the sequence w is n - 1, the maximum index j in
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the quantity Ci‚ j is n, as the quantities Ci‚ n are for the substrings w[i::n - 1]. For convenience, we define the

base cases as Ci‚ i = 1 for 0 � i � n, and for 0 � i < j � n the recurrence can be expressed as follows:

Ci‚ j = Ci + 1‚ j +
X

i<k�j

Cb
i‚ kCk‚ j‚ (1)

where Cb
i‚ j is the number of structures for w[i::j - 1] and containing the pair fi‚ j - 1g: In Equation (1), the

first term corresponds to structures with site i unpaired. The second term accounts for structures containing

pair fi‚ k - 1g, for all k 2 (i‚ j]. For 0 � i < j � n, Cb
i‚ j = 0 if fwi;wj�1g =2B, and otherwise

Cb
i‚ j = Ci + 1‚ j - 1: (2)

The quantities Ci‚ j and Cb
i‚ j for all 0 � i � j � n can be computed in O(n3) time by dynamic pro-

gramming. This implies that we can compute jOwj in cubic time. Here, and throughout this work, we

assume that integer multiplication takes constant time. We discuss this assumption in Section 6.

3. DISTINGUISHABILITY AMONG STRUCTURES

Here we lay out the concepts of symmetry for structures over circular sequences, and distinguishability

of structures. Our explanation here follows the analogous framework given by Dirks et al. (2007) for

particular interacting sequences (which we discuss in Section 5).

We say that circular sequence w has symmetry p if p is the largest integer such that w may be formed by

concatenating one string p times. For example, the circular sequence w = ACACACACAC has symmetry

p = 5. Evidently, the symmetry of a circular sequence divides its length (i.e., the number of bases). If w has

symmetry p, then the bases in w satisfy wi = w(i + t)mod n for all i 2 [0‚ n), where t = n=p. We say that a circular

sequence has nontrivial symmetry if p > 1.

Nontrivial symmetry in a circular sequence renders some structures indistinguishable. Consider a

structure s for circular sequence w of length n and symmetry p > 1. Dirks et al. (2007) recognized that,

when there is a rotational symmetry in the sequence, a structure s is indistinguishable from another

structure s0 if s0 can be obtained by cyclically shifting every pair in s by ht, for any h 2 [0‚ p). Formally, we

define the rotation of a pair fi‚ jg as a mapping

Yc(fi‚ jg) = f(i + c) mod n‚ (j + c) mod ng‚

for any c 2 [0‚ n). We extend this operation to structures:

Yc(s) = fYc(fi‚ jg) : fi‚ jg 2 sg:

Let Z=pZ denote the cyclic group of order p under addition mod p. Given a circular sequence w of length

n and symmetry p, the action of h 2 Z=pZ is defined as the rotation Yht, where again t = n=p. The orbit of

structure s 2 Ow under Z=pZ is then

Orbp(s) = fYht(s) : h 2 Z=pZg:

Therefore, the orbits induced by Z=pZ partition Ow into sets of structures. Two structures s and s0 are

indistinguishable if they belong to the same orbit, and distinguishable otherwise. Such structures have

equivalent loop decomposition and therefore identical free energy. The Orbit-Stabilizer theorem states

jOrbp(s)jjStabp(s)j = p‚

where the stabilizer subgroup of s under the action of Z=pZ is

Stabp(s) = fh : h 2 Z=pZ and Yht(s) = sg:

We define the symmetry of a structure s as the size of its stabilizer. Note that the order of the cyclic group

Z=pZ is p, the symmetry of the given sequence w. The symmetry of the structure s must then divide the

symmetry p of the circular sequence w. The number of indistinguishable structures for a particular structure
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is inversely proportional to the symmetry of that structure. Figure 1 shows example orbits of varying sizes

and symmetries for a circular sequence of symmetry 4. For circular sequence w of symmetry p, the set of

distinguishable structures is defined as the quotient set

Lw = fOrbp(s) : s 2 Owg:

That is, we treat each orbit as a distinguishable structure.

4. COUNTING DISTINGUISHABLE STRUCTURES

Our computational problem is the counting problem defined as follows:

Problem: Distinguishable Count

Input: A circular sequence w of length n and symmetry p.

Question: What is the size of Lw?

To our knowledge, there is no efficient algorithm for Distinguishable Count problem in the literature. We

provide an efficient algorithm by defining subsets consisting of structures having certain periodic char-

acteristics. We first establish some properties of these subsets and then exploit those properties to design an

efficient algorithm for counting distinguishable structures compatible with a circular sequence.

Consider a circular sequence w of length n and symmetry p, and let t = n=p. In the previous section, we

showed that counting distinguishable structures amounts to counting the orbits under the action of cyclic

group Z=pZ. Burnside’s lemma relates the number of orbits to particular subsets of Ow:

jLwj =
1

p

X

h2Z=pZ

jFix(h)j‚ (3)

where

Fix(h) = fs 2 Ow : Yht(s) = sg (4)

is the subset of Ow fixed under the group action of h 2 Z=pZ. We call Fix(h) the h-periodic subset of Ow.

For any h 2 Z=pZ, if s 2 Fix(h), then s 2 Fix(h0) for all h0 2 Æhæ, where Æhæ is the subgroup of Z=pZ

generated by h. Since Æhæ = Æ gcd (h‚ p)æ for any h 2 Z=pZnf0g, we conclude that

Fix(h) = Fix( gcd (h‚ p))‚

for any h 2 Z=pZnf0g. Furthermore, Fix(0) =Ow, whose size is given by C0‚ n. To compute jLwj, we

therefore only need to compute the size of Fix(g) for every proper divisor g of p.

Hofacker et al. (2012) showed that in a structure with nontrivial symmetry, the pairs can be said to be

repeated. More precisely, assume w is a circular sequence of length n and symmetry p > 1. If s is a

structure for w and s has symmetry p, then fi‚ jg 2 s implies Yt(fi‚ jg) 2 s, where t = n=p. This property

A

B C

FIG. 1. Orbits of different sizes for a circular sequence of symmetry 4 (0 indicates the location of the first site). (A)

Orbit size of 4 and symmetry 1. (B) Orbit size of 2 and symmetry 2. (C) Orbit size of 1 and symmetry 4.
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allows any pair in s to be either of form Yht(fi‚ jg) (internal pair) or of form Yht(fi + t‚ jg) (external pair),

for some h 2 [0‚ p) and 0 � i < j < t. We extend this property to the periodic subsets as follows. Again,

assume w is a circular sequence of length n and symmetry p > 1. Let g be a proper divisor of p, and let

q = p=g. If s is a structure for w and s 2 Fix(g), then fi‚ jg 2 s implies Yr(fi‚ jg) 2 s, where r = gt = n=q. We

can therefore write any pair in s as an internal pair Yhr(fi‚ jg) or an external pair Yhr(fi + r‚ jg) for some

h 2 [0‚ q) and 0 � i < j < r.

Let n, p, g, q, and r be as defined above. When considering structures in Fix(g), we must consider two

subsets: (i) structures containing no external pairs, and (ii) those with at least one external pair. In case (i),

similar to the one shown in Figure 2A, it can be expressed as follows:

s =
[

h2[0‚ q)

Yhr(s[0‚ r))‚

where substructure s[0‚ r) is the subset of the pairs in s involving only sites in the indicated range. That is, s is

determined by s[0‚ r). This implies that the number of structures in the first case is C0‚ r.

In case (ii), as depicted in Figure 2B, there is a unique external pair fi + r‚ jg (0 � i < j < r) such that

any other external pair fk + r‚ lg (0 � k < l < r) in s satisfies k < i < j < l. We call fi + r‚ jg the central

pair of s. The central pair fi + r‚ jg implies that any pair fk‚ lg with k 2 (i‚ j) satisfies l 2 (i‚ j), leading to the

existence of the substructure s(i‚ j). Moreover, the external pair fi + r‚ jg defines another substructure s[j‚ i + r].

The union of these two substructures is another substructure s(i‚ i + r]. Since Yr(s) = s, we can express s as

follows:

s =
[

h2[0‚ q)

Yhr s(i‚ i + r]ð Þ:

In other words, the structures in Fix(g) with the central pair fi + r‚ jg are determined by s(i‚ i + r]. The

number of such structures is given by the product Ci + 1‚ jC
b
j‚ i + r + 1, where the two factors correspond to the

numbers of the substructures s(i‚ j) and s[j‚ i + r], respectively. Since the central pair is unique, the subsets of

Fix(g) containing different central pairs do not intersect. We can therefore determine the number of

structures in Fix(g) containing at least one external pair to be
P

0�i<j<r Ci + 1‚ jC
b
j‚ i + r + 1. Combining the two

subsets of Fix(g), we can express its size as

jFix(g)j = C0‚ r +
X

0�i<j�r

Ci + 1‚ jC
b
j‚ i + r + 1‚ where r = gn=p: (5)

Using Equation (5), we develop an algorithm to solve the Distinguishable Count problem. The pseu-

docode is shown in Algorithm 1. We state the main result of this work in the following theorem.

Theorem 1. With a model of computation in which addition and multiplication take constant time, the

Distinguishable Count problem can be solved in O(n3) time and O(n2) space.

Algorithm 1: Counting distinguishable structures for a given circular sequence.

Input: Circular sequence w of length n and symmetry p.

Output: The size of Lw.

1: Compute Ci‚ j and Cb
i‚ j, for 0 � i � j � n.

2: f (h))0 for all h 2 [0‚ p)

3: f (0))C0‚ n

4: for h from 1 to p - 1 do

5: g) gcd (h‚ p)

A B
FIG. 2. Example secondary structures for circular sequence

of symmetry 4. (A) Structure in Fix(2) with only internal

pairs. (B) Structure in Fix(2) containing external pairs.
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Algorithm 1: Counting distinguishable structures for a given circular sequence. (Continued)

6: if g 6¼ h then

7: f (h))F(g)

8: else

9: r)ng=p

10: f (g))C0‚ r

11: for i)0 to r do

12: for j)i + 1 to r do

13: f (g))f (g) + Ci + 1‚ jC
b
j‚ i + r + 1

14: L)0

15: for h from 0 to p - 1 do

16: L)L + f (h)

17: return L=p

Proof. We refer to Algorithm 1. A standard dynamic programming scheme to compute Ci‚ j and Cb
i‚ j takes

O(n3) time and O(n2) space. Note that the remaining steps require only O(pn2) time. Since p � n, the

theorem holds. ,

5. APPLICATIONS OF THE ALGORITHM

Analyzing unlabeled sequences is relevant in studying the combinatoric characteristics of structures.

Previous studies (Cuesta and Manrubia, 2017; Hofacker et al., 2012) involved enumeration of secondary

structures for circular sequences. However, no study has been done on enumerating distinguishable

structures.

Waterman (1978) derived a recursion relation for the number of structures compatible with an unlabeled

sequence of length n. This removes the burden of ensuring that every pair forms a valid base pair, since this

would hold for some sequence. Let C(n) be the number of structures for a sequence of length n, that is,

those satisfying conditions S1–S3 (excluding Condition S4). It can be recursively expressed as follows:

C(n) = C(n - 1) +
Xn - 2

k = 0

C(k)C(n - k - 2)‚ (6)

for n > 0 and with base case C(0) = 1. As Equation (6) suggests, C(n) can be computed in O(n2) time by

computing C(k) for k 2 [1‚ n] in increasing order.

We carry out the same analysis on distinguishable structures for unlabeled circular sequences. We define

L(n‚ p), for a divisor p of n, as the number of distinguishable structures for the unlabeled sequence of length

n and symmetry p. Based on Equation (3), we have

L(n‚ p) =
1

p
(
X

h2(0‚ p)

F( gcd (h‚ p)n=p) + C(n))‚ (7)

where F(r), for r > 0, is the number of g-periodic structures for a circular sequence of length n and

symmetry p such that r = gn=p. From Equation (5),

F(r) = C(r) +
Xr - 2

k = 0

(r - k - 1)C(k)C(r - k - 2): (8)

We note that the case of p = 2 is special as it allow the pair fi‚ i + rg, which cannot be a valid base pair

[see Hofacker et al. (2012) for details]. We omitted the contribution from this case in our analysis, but it can

be handled separately. We can compute F(k), for k 2 [1‚ r], in O(r2) time by dynamic programming.

Therefore, L(n‚ p) can be computed in O(n2) time.

Dirks et al. (2007) defined a class of pseudoknot-free secondary structures for interacting sequences. In

their model, m sequences are concatenated in a given fixed order and treated as a linear sequence along with
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the locations of the concatenation points. Structures of interest must satisfy S1–S4 as well as a condition

involving the concatenation points to ensure the individual sequences are ‘‘connected’’ [see Dirks et al.

(2007) for details]. If the concatenated sequence has length n, we define Hi‚ j and Hb
i‚ j for that sequence

analogously to the Ci‚ j and Cb
i‚ j we defined for a given circular sequence. A dynamic programming

technique, similar to the one used in Dirks et al. (2007) for the partition function problem, can be used to

compute Hi‚ j and Hb
i‚ j in O(n3) time. The entry H0‚ n is then the number of structures for these concatenated

‘‘interacting’’ sequences.

A key observation by Dirks et al. (2007) is that, if the m sequences involve some that are identical,

certain orderings of the sequences may have symmetry. Specifically, the symmetry of the ordering is the

greatest divisor p of m such that the concatenated sequence does not change when cyclically shifting the

ordering by m=p sequences. For example, given two sequences x and y, with x 6¼ y, the concatenated

sequence xyyxyyxyy has symmetry 3. With symmetry p, the structures for the concatenated sequence of

length n are partitioned into orbits of indistinguishable structures under the action of Z=pZ through rotation

Yht where t = n=p and h 2 Z=pZ. This property is identical to that of a circular sequence of symmetry p.

Therefore, Equation (3) applies to count the distinguishable structures (i.e., the orbits) for interacting

sequences within this model. The only difference is in how the sizes of g-periodic subsets are computed:

jFix(g)j =
X

0�i<j�r

Hi + 1‚ jH
b
j‚ i + r + 1‚ (9)

for proper divisor g of p, where r = gn=p. Equation (9) is obtained from Equation (5) by replacing Ci‚ j (Cb
i‚ j)

with Hi‚ j (Hb
i‚ j). We omit the first term because structures with no external pairs would not be connected.

Thus, in this model of interacting sequences, an adaptation of Algorithm 1 can compute the number of

distinguishable structures in O(n3) time.

6. CONCLUSIONS

In this work, we addressed the problem of counting distinguishable structures for circular RNA se-

quences, a problem that, to our knowledge, has not yet seen an efficient algorithm. We applied a result from

group theory to identify useful subsets, the periodic subsets, of the structures. We then extended the

algorithm of Hofacker et al. (2012), applying it to these periodic subsets, allowing us to compute their sizes.

This leads to a cubic-time algorithm. We also showed that the developed approach could be applied to

count distinguishable structures for unlabeled circular sequences as well as for multiple interacting se-

quences. While we focused on secondary structures without pseudoknots, the approach laid out here can

also be applied to structures with pseudoknots.

Our claim of cubic time assumes that multiplication takes constant time, which is intertwined with

restrictions on the magnitudes of numbers and the sizes of their representations. It is well known that for

ordinary sequence, the number of secondary structures grows exponentially with sequence length

(Waterman, 1978). Since the fastest current algorithm to multiply c-bit integers takes Y(c log c) time

(Harvey and Van Der Hoeven, 2021), in a random access machine model, the time complexity would

become O(n4 log n). The performance can be improved by acceleration techniques that apply to many

secondary structure algorithms (Zakov et al., 2010). This detail regarding the assumed model of com-

putation also emerges in the partition function problem, of which the counting problem is a variant.

Algorithms for computing partition functions for RNA structures (Dirks et al., 2007; McCaskill, 1990)

have cubic-time performance, and this requires a floating point arithmetic, which can lead to arbitrary

numerical error.

Since Dirks et al. (2007) first raised the issue of distinguishability, it has not been obvious whether it is

possible to efficiency account for the redundancy in standard dynamic programming algorithms for RNA

secondary structures. In this study, we answered the above question in the affirmative. We note that another

issue, raised by Dirks et al. (2007) regarding the minimum free energy problem in the presence of entropic

energy correction, still remains. The challenge stems from accounting for such a global property as

symmetry while using a dynamic programming scheme that operates on local problems. We believe that

our strategy, building on the works by Dirks et al. (2007) and Hofacker et al. (2012), forms a framework in

which one can address the issue regarding the symmetry in secondary structures.
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